Three-dimensional protonic conductivity in porous organic cage solids
نویسندگان
چکیده
Proton conduction is a fundamental process in biology and in devices such as proton exchange membrane fuel cells. To maximize proton conduction, three-dimensional conduction pathways are preferred over one-dimensional pathways, which prevent conduction in two dimensions. Many crystalline porous solids to date show one-dimensional proton conduction. Here we report porous molecular cages with proton conductivities (up to 10(-3) S cm(-1) at high relative humidity) that compete with extended metal-organic frameworks. The structure of the organic cage imposes a conduction pathway that is necessarily three-dimensional. The cage molecules also promote proton transfer by confining the water molecules while being sufficiently flexible to allow hydrogen bond reorganization. The proton conduction is explained at the molecular level through a combination of proton conductivity measurements, crystallography, molecular simulations and quasi-elastic neutron scattering. These results provide a starting point for high-temperature, anhydrous proton conductors through inclusion of guests other than water in the cage pores.
منابع مشابه
Porous organic cage crystals: characterising the porous crystal surface.
The characterisation of porous crystalline solids often relies on single crystal X-ray diffraction, which does not give direct information about the surface of the material. Here, crystals of a porous organic cage, CC3-R, are investigated by atomic force microscopy and shown to possess two distinct gas-solid interfaces, proving that the bulk crystal structure is preserved at the porous crystal ...
متن کاملControlling the crystallization of porous organic cages: molecular analogs of isoreticular frameworks using shape-specific directing solvents.
Small structural changes in organic molecules can have a large influence on solid-state crystal packing, and this often thwarts attempts to produce isostructural series of crystalline solids. For metal-organic frameworks and covalent organic frameworks, this has been addressed by using strong, directional intermolecular bonding to create families of isoreticular solids. Here, we show that an or...
متن کاملOriented Two‐Dimensional Porous Organic Cage Crystals
The formation of two-dimensional (2D) oriented porous organic cage crystals (consisting of imine-based tetrahedral molecules) on various substrates (such as silicon wafers and glass) by solution-processing is reported. Insight into the crystallinity, preferred orientation, and cage crystal growth was obtained by experimental and computational techniques. For the first time, structural defects i...
متن کاملHeat Transfer in Three-Dimensional Flow along a Porous Plate
An analysis of heat transfer in the flow of a viscous, in-compressible fluid along an infinite porous plate is presented when the plate is subjected to a transverse sinusoidal suction. The flow field becomes three-dimensional due to this type of suction velocity. Expressions for the flow and temperature fields are obtained by series expansion method. It is found during the course of discussion ...
متن کاملTailoring thermal conductivity via three-dimensional porous alumina
Three-dimensional anodic alumina templates (3D-AAO) are an astonishing framework with open highly ordered three-dimensional skeleton structures. Since these templates are architecturally different from conventional solids or porous templates, they teem with opportunities for engineering thermal properties. By establishing the mechanisms of heat transfer in these frameworks, we aim to create mat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016